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a b s t r a c t

We study internal stability in the context of diffusively-coupled control architectures, common in
multi-agent systems (i.e. the celebrated consensus protocol), for linear time-invariant agents. We
derive a condition under which the system cannot be stabilized by any controller from that class. In the
finite-dimensional case the condition states that diffusive controllers cannot stabilize agents that share
common unstable dynamics, directions included. This class always contains the group of homogeneous
unstable agents, like integrators. We argue that the underlying reason is intrinsic cancellations of
unstable agent dynamics by such controllers, even static ones, where directional properties play a key
role. The intrinsic lack of internal stability explains the notorious behavior of some distributed control
protocols when affected by measurement noise or exogenous disturbances.

© 2023 Elsevier Ltd. All rights reserved.
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1. Introduction

A multi-agent system (MAS) is a collection of independent sys-
ems (agents) coupled via the pursuit of a common goal. In large-
cale MASs the information exchange between agents might be
ostly. As such, it is commonly limited to a subset of agents,
nown as neighbors. Control laws that use only information from
eighboring agents are called distributed.
This work studies a class of distributed control laws, where

nly relative measurements are exchanged between neighbors.
In other words, each agent has access only to the difference
between its output and that of each of its neighbors. Such control
laws are called diffusive and systems controlled by them are
nown as diffusively coupled. Diffusive control laws are com-
on in the MAS literature. Relative sensing appears naturally

n MAS tasks, where absolute measurements are hard to obtain,
uch as space and aerial exploration and sensor localization,
ee Khan et al. (2009), Smith and Hadaegh (2005) and Zelazo
nd Mesbahi (2011b) and the references therein. The consensus
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and synchronization problems are well-known examples of diffu-
sively coupled systems (Olfati-Saber et al., 2007; Wieland et al.,
2011).

However, diffusively-coupled systems behave poorly when af-
fected by disturbances and noise. Measurement noise rapidly de-
teriorates performance (Zelazo & Mesbahi, 2011a, §III-A) and even
dynamic controllers can hardly attenuate disturbances (Ding,
2015). To cope with the difficulties, different relaxing assump-
tions are assumed. Some allow for non-relative state (Yucelen
& Egerstedt, 2012) or output (Mo & Guo, 2019) measurements,
while others employ an undisturbed leader (Ding, 2015) or im-
pose limitations even on bounded disturbances (Bürger & De Per-
sis, 2015, Prop. 5). Despite these different assumptions, if they fail,
the resulting trajectories exhibit certain common traits that can
be associated with instability. These traits can be illustrated by
the classical consensus protocol, considered below for a set of
integrator agents and with a static interaction network.

1.1. Motivating example

Reaching agreement between autonomous agents is a funda-
mental building block in multi-agent coordination (Ren & Beard,
2008). In its simplest form it studies a group of independent
integrator agents ẋi(t) = ui(t), where xi and ui are their states
nd control inputs, respectively. The goal is to reach asymptotic
greement between all agents, in the sense that

lim
t→∞

(
xi(t) − xj(t)

)
= 0, ∀i, j, (1)

under the constraint that the ith agent has access only to states
of its neighbors, whose indices belong to a set N . This problem
i
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Fig. 1. Simulation of protocol (2) perturbed by a step at t = td .

an be solved by the celebrated consensus protocol (Olfati-Saber
t al., 2007), which is a diffusive state-feedback of the form

i(t) = −

∑
j∈Ni

(
xi(t) − xj(t)

)
, ∀i. (2)

f certain connectivity conditions on the communication topology
old (i.e. connectedness), then the control law (2) drives the
gents to agreement exponentially fast (Mesbahi & Egerstedt,
010, Ch. 3). The state trajectories of four agents controlled by (2)
re shown in Fig. 1 in the time interval [0, td]. Observe that on this
ime interval the states converge exponentially to the average of
heir initial conditions and the control signals all asymptotically
anish.
This might no longer be the case if the agents are affected by

oad disturbances di, viz.

˙i(t) = ui(t) + di(t). (3)

n example of what happens in such situations is also shown in
ig. 1. At the time instance t = td one agent is affected by a unit
tep disturbance. As a result, all states cease to agree and start to
iverge when t > td, whereas the control signals reach non-zero
teady-state values.
The apparent instability of the whole system, manifested in

he unboundedness of the states, can be explained by the well-
nown fact that the consensus protocol has a closed-loop eigen-
alue at the origin (Olfati-Saber et al., 2007). Nevertheless, the
oundedness of the control signals under such conditions is in-
riguing. Situations wherein some signals in the closed-loop sys-
em are bounded while some others are not normally indicate
nstable pole-zero cancellations in the feedback loop (Zhou et al.,
996, Sec. 5.3). However, controller (2) is static and thus has no
eros.

.2. Contribution

The example above suggests that a deeper inspection of the
nternal stability property could offer insight into the behavior of
iffusively-coupled systems. The internal stability of any feedback
nterconnection requires the stability of all possible input / output
elations in the system, see Skogestad and Postlethwaite (2005)
nd Zhou et al. (1996). However, to the best of our knowledge,
nternal stability has not been explicitly studied in the context of
iffusively-coupled architectures of MASs yet.
In this paper we show that diffusively-coupled systems of LTI

linear time-invariant) agents might not be internally stabilizable.
oosely speaking, this happens if the agents share common un-
table dynamics, directions counting. This, for example, is always
he case in a group of homogeneous unstable agents, like those
iscussed in Section 1.1.
When restricting the result to finite-dimensional agents, we

lso explain the mechanism behind the shown internal instabil-
ty. It is caused by unstable cancellations in the cascade of the
2

ggregate plant and a diffusive controller. Important is that these
ancellations are caused not by controller zeros, but rather by an
ntrinsic spatial deficiency of the diffusively-coupled configura-
ion. These cancellations are intrinsic to the diffusive structure
nd cannot be affected by controller dynamics. Consequently,
he internal stability of feedback systems utilizing only relative
easurements depends solely on the agent dynamics.
In addition to providing a rigorous analysis of the internal sta-

ility of diffusively-coupled systems, we show how the analysis
s readily applied to common extensions found in the literature.
n particular, we discuss more general symmetrically coupled
ulti-agent systems (i.e. not restricted to only diffusive coupling),
symmetric coupling (i.e. MASs over directed graphs), unstable
ystems with no closed right-half plane poles, and MASs over
ime-varying networks. Numerous examples are also provided
long the way to illustrate the main results.
The paper is organized as follows. The problem is set up in Sec-

ion 2 and the main result is presented in Section 3, with several
eneralizations discussed in Section 3.2. Section 4 addresses the
ase of finite-dimensional agents, reformulating the main result
n a more transparent form and revealing the underlying reason
or the reported behavior. Concluding remarks are provided in
ection 5. Two appendices collect definitions and technical re-
ults about coprime factorizations over H∞ and poles and zero
irections of multivariable real-rational transfer functions.

otation
The sets of integer, real, and complex numbers are Z, R, and

, respectively, with subsets Nν := {i ∈ Z | 1 ≤ i ≤ ν}, C0 :=

{s ∈ C | Re s > 0}, and C̄0 := {s ∈ C | Re s ≥ 0}. By Iν and 1ν we
denote the ν×ν identity matrix and ν-dimensional vector of ones,
respectively. When the dimension is immaterial or clear from
context, we use I and 1. The complex-conjugate transpose of a
matrix A is denoted by A⊤, the set of all its eigenvalues by spec(A),
and its minimal singular value by σ(A). The notation diag{Ai}

stands for a block-diagonal matrix with diagonal elements Ai. The
image (range) and kernel (null) spaces of a matrix A are notated
Im A and ker A, respectively. Given two matrices A and B, A ⊗ B
denotes their Kronecker product.

By the stability of a system G we understand its L2-stability. It
is known (Curtain & Zwart, 2020, §A.6.3) that a p×m LTI system
is causal and stable iff its transfer function G(s) belongs to Hp×m

∞ ,
which is the space of holomorphic and bounded functions C0 →

Cp×m (we write H∞ when the dimensions are clear). Given a real-
rational transfer function G(s), its McMillan degree is denoted by
deg(G). By nrankG(s) we understand the normal rank of a function
G(s).

A digraph G = (V, E) consists of a vertex set V and an edge
set E ⊂ V × V , see Godsil and Royle (2001) for more details.
The (oriented) incidence matrix of G is denoted by EG or simply E
when the association with a concrete graph is clear. It is a |V|×|E|

matrix, whose (i, j) entry is

[EG]ij =

⎧⎨⎩
1 if vertex i is the head of edge j
−1 if vertex i is the tail of edge j
0 if vertex i does not belong to edge j.

Note that the construction of the incidence matrix implies that
1⊤EG = 0 for every G.

2. Problem formulation

Consider ν continuous-time LTI agents Pi, each with m inputs
and p outputs, who interact over a graph G with ν nodes and µ

edges. In this formalism, agents i and j are neighbors, in the sense
defined in the Introduction, if they are incident to the same edge.
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Fig. 2. Diffusively-coupled feedback setup (E is the incidence matrix of the
onnectivity graph G).

A general diffusively-coupled MAS originated in Arcak (2007),
lso known as the canonical cooperative control structure (Bullo,
022, Ch. 9), is presented in Fig. 2. It comprises the block-diagonal
ggregate plant P := diag{Pi} with ν blocks, a block-diagonal
dge controller Ke := diag{Ke,j} with µ blocks, and pre- and post-
rocessing based on the incidence matrix E associated with G. To

describe the logic of this setup we may disregard the exogenous
signals dy and du for the time being. The overall controller K :

y ↦→ u is thus defined as

K := (E ⊗ Im)Ke(E⊤
⊗ Ip). (4)

We now discuss how the controller K processes signals.

• The (νp)-dimensional aggregate output of the agents, y, is
first processed by the transpose of the incidence matrix
to produce a (µp)-dimensional vector ỹ = (E⊤

⊗ Ip)y
representing the relative outputs of neighboring agents.

• Each component of ỹ, which is the relative measured coordi-
nate along one edge, is then processed independently by an
edge controller Ke,j, to produce a (µm)-dimensional ‘‘edge
correction’’ signal ũ.

• The (νm)-dimensional aggregate control signal u is then
produced by processing all ũj by the incidence matrix, which
sums up edge corrections for all edges connected to the
corresponded node.

For example, if G is an undirected star graph on three nodes with
node 3 as its center, then we can choose

E =

[ 1 0
0 1

−1 −1

]
,

in which case

ỹ =

[
y1 − y3
y2 − y3

]
and u =

[ ũ1
ũ2

−ũ1 − ũ2

]
.

The consensus protocol (2) corresponds to the choice Ke = −I in
this case, as well as for any other choice of G and ν.

Now consider the exogenous signals du and dy, which we refer
to as disturbances. On the physical level they represent inevitable
effects of the outside world on the controlled plant (agents).
These signals are supposed to be bounded and independent of
the signals generated by the controlled system. We introduce
disturbances to define the notion of the internal stability for
the system in Fig. 2, which is the focus point of this paper.
Specifically, we say that this system is internally stable if the 2 × 2
operator connecting exogenous signals du and dy with internal
signals u and y, i.e.

T4 : (dy, du) ↦→ (y, u) (5)

is well defined and stable, see Georgiou and Smith (1993, Sec. 4).
3

Fig. 3. Diffusively-coupled feedback setup as edge stabilization.

The general question of interest in this paper is under what
conditions on the agents Pi are there causal edge controllers Ke,j
internally stabilizing the diffusively-coupled system in Fig. 2? Note
that the existence of edge controllers rendering the closed-loop
operator well defined is obvious, just take Ke,j = 0 for all j. We
shall thus focus on the stability of T4.

Addressing the stability question in the most general, nonlin-
ear and time-varying, case might be overly technical. We thus
limit our attention to the class of LTI plants and edge controllers,
whose transfer functions belong to the quotient field of H∞,
see Curtain and Zwart (2020, §A.7.1), which is a sufficiently
general class. We further assume that

A1 there are right coprime Mi,Ni ∈ H∞ and left coprime
M̃i, Ñi ∈ H∞ such that Pi = NiM−1

i = M̃−1
i Ñi for all i,

where coprimeness is understood as the existence of Bézout
coefficients in H∞, see Appendix A. The representation of Pi
above is known as its coprime factorization. We hereafter refer
to the transfer functions Mi(s) and M̃i(s) as the right and left
denominators of Pi, respectively, and the transfer functions Ni(s)
and Ñi(s) as its right and left numerator. Assumption A1 is practi-
cally nonrestrictive. It holds for all finite-dimensional agents with
proper transfer functions and is equivalent to the stabilizability
of Pi by feedback for agents with transfer functions from the
quotient field of H∞ (Smith, 1989). Thus, if an agent fails to satisfy
A1, we cannot expect any MAS that includes it to be stabilizable
by diffusive coupling.

Remark 1. We choose the application points of exogenous
disturbances for the internal stability analysis to be at the points
where the agents, P , are connected with the controller K defined
in (4). In this choice we follow the physical nature of the inter-
connection in Fig. 2 and think of separating the blocks E ⊗ I and
E⊤

⊗ I in the controller as merely a way to streamline the choice
of the design parameters, which are the edge controllers in Ke. An
alternative viewpoint is presented in Fig. 3, where all fixed parts
are regarded as the controlled plant,

Pe := (E⊤
⊗ Ip)P(E ⊗ Im), (6)

much inline with the generalized plant philosophy (Skogestad &
Postlethwaite, 2005, Sec. 3.8), see e.g. Zelazo and Mesbahi (2011a,
Fig. 6) or Bullo (2022, E9.6). A natural definition of internal
stability for it shall be based on the exogenous inputs d̃y and
d̃u, entering before and after the edge controller Ke. This would
change the results, see Remark 3 at the end of Section 4.1. Still,
we believe that the configuration in Fig. 2 is the right way to
address the internal stability of MASs. After all, it is the agents
who interact with the environment.

3. The main result

The main technical result of this work, whose proof is post-
poned to Section 3.1, is formulated as follows.
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heorem 3.1. No LTI Ke,j can internally stabilize the diffusively-
oupled system in Fig. 2 if there is λ ∈ C̄0, common to all agents,
such that
ν⋂

i=1

ker [Mi(λ)]⊤ ̸= {0} (7a)

r
ν

i=1

ker M̃i(λ) ̸= {0}. (7b)

here Mi and M̃i are denominators in the coprime factorizations of
i under A1.

Theorem 3.1, formulated in terms of coprime factors of agents,
ight appear somewhat abstract and technical. This is a conse-
uence of considering a fairly general class of LTI agents under the
ild assumption A1. We show in the next section that if the class

of admissible agents is limited to finite-dimensional ones, then
more insightful statements can be provided. Nevertheless, the
formulation in Theorem 3.1 becomes substantially more intuitive
in some frequently studied special cases.

The first of them is the case of homogeneous agents, which is
perhaps the best studied situation.

Corollary 3.2. If the agents are homogeneous, i.e. Pi = P0 for all
∈ Nν , and P0(s) has at least one pole in C̄0, then no LTI Ke,j can

internally stabilize the system in Fig. 2.

Proof. By Lemma A.2, if λ ∈ C̄0 is a pole of P0(s), then both M0(λ)
and M̃0(λ) are singular, whence the result follows. □

This result readily applies to the problem studied in Sec-
tion 1.1. The agents in (3) are homogeneous and P0(s) = 1/s
has an unstable pole at the origin. Corollary 3.2 then agrees with
the conclusion of Section 1.1 that the closed-loop system is not
internally stable.

Another particular case for which the formulation is simplified
is a MAS with SISO agents.

Corollary 3.3. If the agents are SISO and all have a pole at the same
λ ∈ C̄0, regardless of multiplicities, then no LTI Ke,j can internally
stabilize the diffusively-coupled system in Fig. 2.

Proof. By Lemma A.2, in this case Mi(λ) = M̃i(λ) = 0 for all
i ∈ Nν , whence the result follows. □

A consequence of Corollary 3.3 is that the consensus protocol,
as well as any other diffusively-coupled control laws, cannot
internally stabilize a group of SISO agents if all of them contain an
integral action. This result is reminiscent of that by Wieland et al.
(2011) that states that a common internal model is a necessary
condition for a diffusively-coupled system to synchronize their
state trajectories. It highlights a contradiction or trade-off of sorts,
where on the one hand, a common pole at the origin among
agents is required for synchronization, and on the other hand, this
common (unstable) pole is precisely the cause for lack of internal
stability.

3.1. Proof of Theorem 3.1

We are now prepared to prove Theorem 3.1. Only the state-
ment about the right coprime factor, i.e. (7a), is proved. The proof
of (7b) follows by dual arguments.

The proof requires a technical result of Fuhrmann (1968),
known as the matrix corona theorem, see also the proof of Geor-
giou and Smith (1993, Prop. 11) for a closer formulation.
 o

4

Lemma 3.4. If G ∈ Hn×n
∞

, then

G−1
∈ H∞ ⇐⇒ infs∈C̄0

σ(G(s)) > 0.

It is readily seen that MP := diag{Mi} and NP := diag{Ni}

are right coprime factors of P = diag{Pi}. Because any internally
stabilizing K in (4) is in effect stabilized by the plant, we only
need to consider edge controllers for which K admits coprime
factorizations over H∞. So let K = NKM−1

K for right coprime
MK ,NK ∈ H∞. By (4),

NK (s) = (E ⊗ Im)Ke(s)(E⊤
⊗ Ip)MK (s).

Because 1⊤E = 0, we have that (1⊤
⊗ Im)(E ⊗ Im) = 0 as

well and, hence, (1⊤
⊗ Im)NK (s) = 0 for all s at which Ke(s) is

finite. But Ke(s) is in the quotient field of H∞, meaning that the
denominators of its entries are holomorphic in C0 and, by Rudin
(1987, Thm. 10.18), may have at most countable number of iso-
lated zeros. As such, we can always find a region in C0 in which
(1⊤

⊗ Im)NK (s) = 0. But the latter implies that

(1⊤
⊗ Im)NK = 0,

by the same (Rudin, 1987, Thm. 10.18).
Now, return to the system in Fig. 2. It is readily verified that

the closed-loop system T4 in (5) reads

T4 =

[
I
K

]
(I − PK )−1 [

I P
]

=:

[
S Td
Tc T

]
, (8)

where the blocks of T4 are the four fundamental closed-loop
transfer functions. Straightforward algebra yields that

T4 =

[
MK 0
NK 0

][
MK −NP
−NK MP

]−1

. (9)

This is a right coprime factorization of T4, as attested by the
Bézout equality (cf. (A.1a))[
M̃P ÑP
−YP XP

][
MK −NP
−NK MP

]
+

[
XK − M̃P YK + ÑP

YP XP

][
MK 0
NK 0

]
= I,

where M̃P := diag{M̃i} and ÑP := diag{Ñi}. By Lemma A.1, T4 is
stable if and only if[

MK −NP
−NK MP

]−1

∈ H∞, (10)

or

inf
s∈C̄0

σ

([
MK (s) −NP (s)
−NK (s) MP (s)

])
> 0 (11)

y Lemma 3.4. But (7a) implies that there is v ̸= 0 such that
⊤Mi(λ) = 0 for all i or, equivalently, (1 ⊗ v)⊤MP (λ) = 0. Taking
nto account that (1 ⊗ v)⊤NK = v⊤(1 ⊗ Im)⊤NK = 0, we end up
with[
0 (1 ⊗ v)⊤

] [
MK (λ) −NP (λ)
−NK (λ) MP (λ)

]
= 0, (12)

hich violates (11). We thus have that if (7a) holds, then there is
o Ke that internally stabilizes the system in Fig. 2. □

.2. Generalizations

Some possible generalizations of the result of Theorem 3.1 are
utlined below.
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.2.1. Asymmetric coupling
Some MAS problems consider a directed interaction graph,

aking the notion of neighboring agents asymmetric. Controllers
nder such constrains are no longer diffusive in the sense dis-
ussed in Section 2. Still, a variant of Theorem 3.1 may apply.
For example, let an edge going from node i to node j indicate

hat the ith agent has access to yi − yj. The existence of the
dge (i, j) does not imply that there is also the edge (j, i). It is
vident that the controller outlined in Fig. 2 and (4) can no longer
rovide an appropriate distributed controller since, as discussed
n Section 2, it sums up all the edge correction terms connected
o each corresponding node. Nevertheless, several notable MAS
ontrol architectures over directed graphs still admit a decompo-
ition similar to that of (4). Consider again the classic consensus
rotocol. It can be adapted to accommodate directed graphs by
eplacing the symmetric Laplacian, L = EE⊤, with a directed
ounterpart such as the out-degree Laplacian Lout (Bullo, 2022,
ec. 7.3). By defining an auxiliary matrix,

Bout]ij =

{
1 if vertex i is the head of edge j
0 otherwise,

the directed out-degree Laplacian can be represented by the
product Lout = BoutE⊤. This suggests that a controller of the form

Kout := (Bout ⊗ Im)Ke(E⊤
⊗ Ip), (13)

can be used to represent various control laws over directed
graphs. For example setting Ke = −I results in the aforemen-
tioned directed consensus protocol, while picking Ke = Iν ⊗ K̃
for some gain K̃ yields the synchronizing controllers discussed
in Bullo (2022, Sec. 8.4).

The controller structure in (13) mirrors that in (4). If (7b)
holds, then the proof of Theorem 3.1 applies verbatim to any
MAS controlled by it. However, this is not the case for (7a),
implying that some systems may be stabilizable only if the graph
is directed, as illustrated in the following example.

Example 1. Consider a system of ν = 3 first-order agents

P1(s) =

[
1 0
1/s 1

]
and P2(s) = P3(s) =

[
1/s 0
1 1

]
.

Assume that their connectivity is represented by the directed
cycle graph, which has three directed edges (1, 2), (2, 3), and
(3, 1). This system can be described by (13) with

E =

[ 1 0 −1
−1 1 0
0 −1 1

]
, Bout = I3,

and arbitrary block-diagonal edge controllers. It is then a matter
of standard algebra to verify that these plants admit denomina-
tors

M̃1(s) =

[
1 0
0 s/(s + 1)

]
and

M̃2(s) = M̃3(s) =

[
s/(s + 1) 0

0 1

]
= Mi(s), ∀i ∈ N3.

Hence, condition (7a) holds for λ = 0, whereas condition (7b)
holds for no λ. Thus, if the interconnection graph was undirected,
then Theorem 3.1 would rule out the existence of internally
stabilizing edge controllers. But in the directed case in form (13)
with the identity Bout what matters is only (7b). Hence, we cannot
rule out the existence of an internally stabilizing controller. And
indeed, it can be verified that

Ke(s) = − diag
{[

1 1
]

, I2, I2

}

5/3 1 o

5

results in an internally stable interconnection, with the closed-
loop poles in {−1/2, −3/4, −1}.

Of course, following a similar procedure we may define the
analogous Kin (corresponding for example to the in-degree di-
rected consensus protocol) and consider only condition (7a), then
again the proof holds unchanged.

Remark 2. The stabilizability of control architectures over di-
rected graphs may nevertheless still require checking both condi-
tions of Theorem 3.1. This thesis is based on an interpretation of
the edge controller (13) as (dynamic) edge weights of the directed
graph. A directed graph is called weight balanced if the accumu-
lated weights of incoming and outgoing edges are equal for each
node. It is known (Mesbahi & Egerstedt, 2010, Thm. 3.17) that the
consensus protocol for integrator agents can reach an average
agreement, i.e. xi(t) → (1/ν)1′x(0) for all i, iff the underlying
digraph is weight balanced and weakly connected. A key property
to prove this result is that the Laplacian of a weight-balanced
digraph, Lout, satisfies ker Lout = ker L⊤

out = Im 1. Viewed within
he context of Theorem 3.1, this implies that if edge controllers
n (13) are chosen such that digraph is weight balanced, then both
onditions of (7) must be checked anyway.

.2.2. Arbitrary symmetric coupling
The result of Theorem 3.1 still holds if the incidence matrix

s replaced with a different coupling matrix, say F ∈ Rµ×ν , as
ong as there is a vector 0 ̸= v ∈ Rµ such that v⊤F = 0. Such
eneralizations of a MAS were recently discussed in Belabbas
t al. (2021), but are also included in works considering, for
xample, distributed function calculation in MAS (Sundaram &
adjicostis, 2008).

.2.3. Unstable systems with no poles in C̄0
It might happen that Pi ̸∈ H∞ not because of poles, or other

ingularities, in C̄0. For example, Pi(s) = s/(s + 1 + se−s) has
o singularities in C̄0, but nonetheless does not belong to H∞,
ee Partington and Bonnet (2004). The proof still applies in this
ase, and all we need is to replace (7) with the assumption that
here is a sequence {λj} in C0 such that inf{λj} v⊤Mi(λj) = 0, or its
ual version, holds for all i ∈ Nν and some v ̸= 0.

.2.4. Time-varying K
The main result also extends to the case of time-varying con-

rollers. This is particularly relevant for varying interconnection
opologies, i.e. those where EG(t) = E(t) is the incidence matrix
f the time-varying graph G(t). Still, the condition 1⊤E(t) holds
or any topology, rendering the denominator in (9) not stably
nvertible. We can then use (Verma, 1988, Theorem (i)) to show
hat under no choice of Ke the system is stabilizable, at least in the
inite-dimensional case, whenever either one of the conditions in
7) holds.

. Finite-dimensional agents

If the agents Pi are finite dimensional, the result of the previ-
us section can be reformulated in a more insightful way. This
s due to the ultimate connection between stability and pole
ocations, as well as clear definitions of cancellations in this case.
o we proceed with assuming that all transfer functions Pi(s) are
eal rational and proper (A1 always holds then).

Let pdiri(G, λ) and pdiro(G, λ) denote input and output direc-
tion of a pole λ in G(s), see Appendix B for details and other
elated definitions. The result below reformulates the conditions
f Theorem 3.1 via pole directions of agents.



G. Barkai, L. Mirkin and D. Zelazo Automatica 155 (2023) 111158

P
(⋂
a⋂
r

P
a
L

t
a
o
C
c

E

P

D

p

p

T
r
T
c

K

T
e
(
α

m
e

E
t

p

b

p

T
w

m
i

C
a
i
i

P
a

C
s
l
t
e
l
Z
u
a
p

4

o
c
m
a
e
c

d
m
d
a
t
i
G
a
i

G

(
N

G

i
S
G

c
F

P
l

t
t
T
F

roposition 4.1. If Pi(s) are real rational and proper, then (7a) and
7b) are equivalent to the existence of λ ∈ C̄0 such that
ν

i=1

pdiri(Pi, λ) ̸= {0} (14a)

nd
ν

i=1

pdiro(Pi, λ) ̸= {0}, (14b)

espectively.

roof. Because λ ∈ C̄0 is not a pole of Mi(s), Lemma B.2 applies
nd (7a) reads ∩

ν
i=1 zdiro(Mi, λ) ̸= {0}. Then (14a) follows by

emma B.3. The proof for (14b) is similar. □

In other words, for the system in Fig. 2 to not be stabilizable,
he agents should not only have a common unstable pole, but also
common nontrivial direction of such a pole. Directions are obvi-
usly matched in the homogeneous and SISO cases addressed in
orollaries 3.2 and 3.3, respectively. But the MIMO heterogeneous
ase may be less trivial.

xample 2. Consider a system with ν = 2 first-order agents

1(s) =

[
1/s 0
0 1

]
and P2(s) =

[
1
α

]
1
s

[
1 β

]
.

irections of their pole at the origin are

diri(P1, 0) = pdiro(P1, 0) = Im
[
1
0

]
,

diri(P2, 0) = Im
[
1
β

]
, and pdiro(P2, 0) = Im

[
1
α

]
.

here are nontrivial intersections between input and output di-
ections of the agents if and only if β = 0 and α = 0, respectively.
he incidence matrix is E =

[
1

−1

]
in this case. Choose the edge

ontroller (there is only one edge in this example) as

e(s) =

[
(α − β)β −α

β 0

]
.

he closed-loop characteristic polynomial, understood as the low-
st common denominator of elements of T4(s) in (8), is then
s + α2)(s + β2). Thus, the closed-loop system is stable unless
= 0 or β = 0, which agrees with (14).

Also worth emphasizing is that conditions (14a) and (14b)
ight not be equivalent for MIMO agents, as illustrated by the
xample below.

xample 3. Return to the system studied in Example 1. Direc-
ions associated with the (unstable) pole at the origin are

diri(Pi, 0) = Im
[
1
0

]
, ∀i ∈ N3

ut

diro(P1, 0) = Im
[
0
1

]
̸= Im

[
1
0

]
= pdiro(P2, 0) .

hus, in this case (14a) holds, whereas (14b) does not. This agrees
ith what we saw in Example 1 with respect to conditions (7).

Another outcome of the finite dimensionality is that the for-
ulation of Corollary 3.2 can be strengthened to an ‘‘if and only

f’’ statement.
 c

6

orollary 4.2. If the agents are homogeneous, i.e. Pi = P0 for
ll i ∈ Nν , and P0(s) is real rational and proper, then an LTI Ke,j can
nternally stabilize the diffusively-coupled system in Fig. 2 if and only
f P0 is stable.

roof. If P0 is unstable, then it has a pole in C̄0 and Corollary 3.2
pplies. If P0 is stable, Ke = 0 does the job. □

One should be careful not to conclude from the proof of
orollary 4.2 that only Ke = 0 can be used to guarantee internal
tability. The case of Ke = 0 effectively decouples all the agents
eading only to a ‘‘trivial’’ coordination (i.e. all agents converge
o the origin). One can design edge controllers with additional
xternal inputs to drive the relative states ỹ to non-trivial so-
utions using the methods, for example, described in Sharf and
elazo (2017). For non-trivial agreement among the agents, the
se of an unstable edge controller is possible provided that an
ppropriately defined external input is fed into the system at the
oint dy in Fig. 2.

.1. Diffusive control laws and unstable cancellations

The formulation of Proposition 4.1 is more intuitive than that
f Theorem 3.1. Still, neither of them explains why no edge
ontroller can stabilize the system in Fig. 2 if agents share com-
on unstable dynamics, directions counted. In this part we aim
t offering explanations. We argue that a key property to this
nd is intrinsic unstable cancellations between the plant and the
ontroller.
The cascade (series) interconnection G2G1 has cancellations if

eg(G2G1) < deg(G1) + deg(G2). In other words, cancellations
ean that some parts of the dynamics (modes) of either factor
isappear in the cascade. Specifically, we say that a pole of G1(s)
nd/or G2(s) is canceled if its multiplicity in G2(s)G1(s) is smaller
han the sum of its multiplicities in G1(s) and G2(s). Cancellations
n the SISO case are always caused by the presence of zeros of
1(s) at the locations of poles of G2(s), or vice versa. As such, they
re termed pole-zero cancellations. The situation is more complex
n the MIMO case. For example, let

1(s) =
1
s

[
1 0
0 1

]
and G2(s) =

[
1 −1

−1 1

]
,

with deg(G1) = 2 (two poles at the origin) and deg(G2) = 0
no poles). The system G2 is static and thus has no zeros either.
evertheless, the transfer function

2(s)G1(s) =
1
s

[
1 −1

−1 1

]
s first order, meaning that one of the poles of G1(s) is canceled.
uch cancellations, brought on by the normal rank deficiency of
2(s), are a lesser-known phenomenon.
The result below, proved in Section 4.2, states that such can-

ellations are present between the plant and the controller in
ig. 2 whenever the conditions of Proposition 4.1 hold.

roposition 4.3. Let P(s) and Ke(s) be real rational and proper and
et λ ∈ C̄0 be a pole of P(s).

(i) If (14a) holds, then λ is canceled in P(s)K (s).
(ii) If (14b) holds, then λ is canceled in K (s)P(s).

Unstable pole-zero cancellations between a plant and a con-
roller are a consensual taboo in feedback control. Textbooks treat
hem as a kind of a cardinal sin, which shall be avoided at all costs.
he reason is that canceled dynamics do not really disappear.
or example, poles of a SISO plant P(s) canceled by zeros of a
ontroller K (s) always show up in the closed-loop disturbance
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=

ensitivity Td(s), see (8). This is the very reason to require internal
tability. Unstable cancellations due to deficient normal rank are
ess common and less studied. Nevertheless, they cause same
epercussions. Namely, canceled dynamics shows up in at least
ne closed-loop relation, rendering the system prone to the effect
f exogenous signals.
Assume, for example, that condition (14a), or (7a), holds for

ome λ ∈ C̄0. It follows from the proof of Theorem 3.1 that there
s then v ̸= 0 such that (12) holds. Therefore,[

0
1 ⊗ v

]
∈ zdiro

([
MK −NP
−NK MP

]
, λ

)
= pdiri(T4, λ)

where the equality follows by Lemma B.3 and the fact that the
factors in (9) are right coprime. By Lemma B.1 and (8)

T4(s)
[

0
1 ⊗ v

]
=

[
Td(s)
T (s)

]
(1 ⊗ v)

as an unstable pole at s = λ. In other words, there is a
oad disturbance du in Fig. 2 such that either y or u or both is
unbounded. Likewise, it can be shown that if (14b) holds, then[
S Td

]
̸∈ H∞, i.e. du or/and dy might cause an unbounded y.

his explains why the consensus protocol in Section 1.1 has an
nstable load disturbance response.
It can be shown that if the consensus discussed in Section 1.1

an be attained, then all components of T4 but Td are stable,
hereas Td(s) has a pole at the origin. This agrees with the sit-
ation in SISO pole-zero cancellations discussed above. However,
d is not necessarily unstable in a general MIMO case if either
f the conditions in (14) holds. The example below illustrates a
ifferent scenario.

xample 4. Consider a system with ν = 2 agents

1(s) =

[
s/(s + 1) 0

1/s 1

]
and P2(s) =

[
1/s 0
1 s/(s + 1)

]
both are second order). In this case there is only one edge. Select

e(s) = Ke,1(s) = −
1
3

[
1 0
0 2/s

]
.

t is then a matter of routine calculations to see that S, Td, and
Tc are stable, each having (s + 2)(2s + 1)2(3s + 1) as the lowest
common denominator of its entries. However, T (s) has a pole at
the origin in addition, rendering the whole T4 unstable.

Moreover, it may even happen that canceled dynamics of P are
not excited by the (load) disturbance du, but rather only by dy.

Example 5. Consider a system with ν = 2 agents, yet again, now
with the second order

P1(s) =

[
s/(s + 1) 1/s

0 1

]
, P2(s) =

[
1/s 1
0 s/(s + 1)

]
and the edge controller from Example 4. It can be calculated that
in this case T , Td, and Tc are stable, each having (s + 2)(2s +

1)2(3s+1) as the lowest common denominator of its entries. The
sensitivity S(s) has an additional pole at the origin. This implies
that the responses to du are all stable, whereas the response of y
to dy is unstable.

Remark 3. Stabilizability conditions for the setup in Fig. 3
would be substantially different from those in Theorem 3.1 or
Proposition 4.1. If we consider the class of LTI edge controllers
Ke, then the stabilizability problem boils down to the question
of existing decentralized fixed modes (DFMs) in Pe defined by
(6), see Davison et al. (2020, Sec. 2.2). If controllers are allowed
to be periodically time-varying, then even this condition is not
7

restrictive (Anderson & Moore, 1981). However, this analysis has
a snag in that the very construction of Pe might have unstable
cancellations. For example, return to the case of ν = 3 integrator
agents with an indirect star interconnection graph discussed in
Section 2. In this case P(s) = (1/s)I3 has three poles at the origin,
hereas

e(s) =

[
1 0 −1
0 1 −1

](1
s
I3
)[ 1 0

0 1
−1 −1

]
=

1
s

[
2 1
1 2

]
is a second-order transfer function. This Pe is easily stabilizable
by decentralized edge controllers, e.g. by Ke = −I2. But this
ontroller cannot see the canceled unstable mode, which remains
part of the closed-loop system.

.2. Proof of Proposition 4.3

Bring in minimal realizations

i(s) =

[
Ai Bi
Ci Di

]
and K (s) =

[
AK BK
CK DK

]
so the realization

P(s) =

[
AP BP
CP DP

]
:=

[
diag{Ai} diag{Bi}

diag{Ci} diag{Di}

]
is also minimal. To prove the first item of the Proposition it is
then sufficient to show that λ is an uncontrollable mode of

P(s)K (s) =

[ AK 0 BK
BPCK AP BPDK
DPCK CP DPDK

]
.

To this end, note that (4) implies (1 ⊗ I)⊤
[
CK DK

]
= 0 and

condition (14a) is equivalent to the existence of 0 ̸= v ∈ Cm such
that v = B⊤

i ηi for some ηi such that η⊤

i (λI − Ai) = 0. The latter is
equivalent to the existence of η ̸= 0 such that

η⊤(λI − AP ) = 0 and η⊤BP = (1 ⊗ v)⊤

for some v ̸= 0. Therefore,[
0 η⊤

] [
AK − λI 0 BK
BPCK AP − λI BPDK

]
v⊤(1 ⊗ I)⊤

[
CK 0 DK

]
= 0

and the PBH test for the realization of PK fails for the mode
at λ, proving the first item. The second item follows by similar
arguments. □

5. Concluding remarks

In this paper we have studied the internal stability of multi-
agent systems controlled by diffusively coupled laws. We have
argued that internal stability, with entry points of exogenous sig-
nals at the connections between the agents and the controller, is a
vital property in multi-agent systems and have proved that it can
never be attained if the agents share common unstable dynamics,
directions counted. In particular, this class always includes the
case of homogeneous unstable agents or heterogeneous SISO
agents with a common unstable pole, like an integral action. We
have shown that the underlying reason for the lack of stabiliz-
ability is intrinsic cancellations of aligned unstable dynamics of
agents by the diffusive coupling mechanism.

An immediate outcome of the proposed analysis is that the
uniformity must be broken in the control of unstable multi-
agent systems. This is the underlying reason behind several of
the different assumptions mentioned in Section 1. Introducing
a leader, or ‘‘virtual’’ agent, can potentially break the common
instability, while permitting non-relative feedback either locally
stabilize the agents or again, break the uniformity.
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ppendix A. Coprime factorizations over H∞

In this Appendix, basic coprime factorization results that are
equired in the paper are presented. A comprehensive exposition
f the subject can be found in Vidyasagar (1985).
Functions M ∈ Hm×m

∞
and N ∈ Hp×m

∞ are said to be right
oprime if there are X ∈ Hm×m

∞
and Y ∈ Hm×p

∞ (Bézout coefficients)
such that

XM + YN = Im. (A.1a)

unctions M̃ ∈ Hp×p
∞ and Ñ ∈ Hp×m

∞ are said to be left coprime if
here are X̃ ∈ Hp×p

∞ and Ỹ ∈ Hm×p
∞ such that

˜ X̃ + ÑỸ = Ip. (A.1b)

transfer function G(s) is said to have coprime factorizations over
∞ if there are right coprime MG,NG ∈ H∞ and left coprime

˜ G, ÑG ∈ H∞, known as right and left coprime factors of G,
respectively, such that

G = NGM−1
G = M̃−1

G ÑG. (A.2)

Coprime factors are unique up to post- or pre-multiplication by
bi-stable transfer functions for right and left factors, respectively.

Lemma A.1. If G(s) has coprime factorizations, then

G ∈ H∞ ⇐⇒ M−1
G ∈ H∞ ⇐⇒ M̃−1

G ∈ H∞.

Proof. The ‘‘if’’ part of the first equivalence relation is immediate
from (A.2). Its ‘‘only if’’ part follows from rewriting the Bézout
equality (A.1a) as M−1

G = XG + YGG. The second relation follows
by similar arguments. □

Lemma A.2. Let G(s) have coprime factorizations. If λ ∈ C̄0 is a
pole of G(s), then MG(λ) and M̃G(λ) are singular.

Proof. Because λ ∈ C̄0, the singularity ofMG(λ) or M̃G(λ) does not
depend on concrete factorizations taken. If MG(λ) is nonsingular,
then NG(λ)MG(λ)−1 is bounded, which implies that λ cannot be a
pole of G(s). The proof for M̃G is similar. □

Appendix B. Poles, zeros, and their directions

This Appendix collects some definitions and facts on poles, ze-
ros, and their directions for MIMO transfer functions. More details
can be found in Skogestad and Postlethwaite (2005), although we
use slightly different definitions of directions (subspaces, rather
than vectors), in line with Mirkin (2019).

Let G be a finite-dimensional LTI system having a proper
transfer function G(s). The system G has a state–space realization

G(s) =

[
A B
C D

]
:= D + C(sI − A)−1B. (B.1)

The eigenvalues of A are known as poles of the realization (B.1).
The set of all realization poles, multiplicities counted, coincides
with that of the poles of the transfer function G(s) if and only if
the realization is minimal. Invariant zeros of the realization (B.1)
are defined as the points λ ∈ C at which

rank
[
A − λI B

C D

]
< nrank

[
A − sI B

C D

]
(the matrix polynomial of s on the right-hand side is dubbed
the Rosenbrock system matrix). The set of all invariant zeros
comprises transmission zeros of the transfer function G(s) and
hidden modes of realization (B.1).
8

Poles and zeros have (spatial) directions for MIMO systems.
Assume through the rest of this Appendix that the realization in
(B.1) is minimal. By input and output directions of a realization
pole λ of (B.1), we understand the subspaces

pdiri(G, λ) := B⊤ ker(λI − A)⊤ ⊂ Cm (B.2a)

and

pdiro(G, λ) := C ker(λI − A) ⊂ Cp, (B.2b)

respectively. If λ is not a pole of G(s), then both definitions in (B.2)
result in the trivial subspace {0}.

Lemma B.1. If λ ∈ C is a pole of G(s), then

(i) λ is a pole of G(s)v whenever 0 ̸= v ∈ pdiri(G, λ),
(ii) λ is a pole of v⊤G(s) whenever 0 ̸= v ∈ pdiro(G, λ).

Proof. Bring in a minimal realization of G as in (B.1). If (A, Bv) is
controllable, then every eigenvalue of A is a pole of G(s)v, by the
observability of (C, A). If (A, Bv) is uncontrollable, without loss of
generality we may assume that

(A, B) =

([
Ac A12
0 Ac̄

]
,

[
Bc
Bc̄

])
with controllable (Ac, Bcv) and Bc̄v = 0. In this case λ is not a
pole of G(s)v iff λ ̸∈ spec(Ac). So assume that λ ̸∈ spec(Ac), which
implies that λ ∈ spec(Ac̄) and that

B⊤ ker(λI − A)⊤ ⊂
[
B⊤
c B⊤

c̄

]
Im

[
0
I

]
= Im B⊤

c̄ .

But then v ∈ pdiri(G, λ) H⇒ v ∈ Im B⊤

c̄ = (ker Bc̄)⊥, which
contradicts the condition Bc̄v = 0. Hence, λ must be a pole of
G(s)v. The second item follows by similar arguments. □

Input and output directions of an invariant zero λ are defined
as

zdiri(G, λ) :=
[
0 Im

]
ker

[
A − λI B

C D

]
⊂ Cm (B.3a)

and

zdiro(G, λ) :=
[
0 Ip

]
ker

[
A − λI B

C D

] ⊤

⊂ Cp, (B.3b)

respectively. With some abuse of notation we use the definitions
in (B.3) also if λ is not an invariant zero of (B.1), but the normal
rank of G(s) is deficient. For example, in our notation

zdiri

([
1 −1

−1 1

]
, λ

)
= zdiro

([
1 −1

−1 1

]
, λ

)
= Im 12

for all λ ∈ C. In such situations directions are understood as
normal null spaces.

Lemma B.2. If λ ̸∈ spec(A), then it is an invariant zero of G iff
rankG(λ) < nrankG(s) and

zdiri(G, λ) = kerG(λ) and zdiro(G, λ) = ker [G(λ)]⊤.

Proof. Follows from the relations[
A − λI B

C D

]
=

[
A − λI 0

C G(λ)

][
I (A − λI)−1B
0 I

]
=

[
I 0

C(A − λI)−1 I

][
A − λI B

0 G(λ)

]
and the assumed invertibility of A − λI . □
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emma B.3. If λ ∈ C̄0, then it is a pole of G(s) if and only if
t is a zero of the denominators MG(s) and M̃G(s) of its coprime
actorizations. Moreover,

diri(G, λ) = zdiro(MG, λ) and pdiro(G, λ) = zdiri(M̃G, λ)

n this case.

roof. Follows by Mirkin (2019, Prop. 4.16) and the fact that a
ole of G(s) in C̄0 is a zero of all possible denominators. □
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